Feedback signaling controls leading-edge formation during chemotaxis.

نویسندگان

  • Pascale G Charest
  • Richard A Firtel
چکیده

Chemotactic cells translate shallow chemoattractant gradients into a highly polarized intracellular response that includes the localized production of PI(3,4,5)P(3) on the side of the cell facing the highest chemoattractant concentration. Research over the past decade began to uncover the molecular mechanisms involved in this localized signal amplification controlling the leading edge of chemotaxing cells. These mechanisms have been shown to involve multiple positive feedback loops, in which the PI(3,4,5)P(3) signal amplifies itself independently of the original stimulus, as well as inhibitory signals that restrict PI(3,4,5)P(3) to the leading edge, thereby creating a steep intracellular PI(3,4,5)P(3) gradient. Molecules involved in positive feedback signaling at the leading edge include the small G-proteins Rac and Ras, phosphatidylinositol-3 kinase and F-actin, as part of interlinked feedback loops that lead to a robust production of PI(3,4,5)P(3).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL-C3G complex and activating Rap1 at the leading edge.

Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell-extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we des...

متن کامل

Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement

During chemotaxis, receptors and heterotrimeric G-protein subunits are distributed and activated almost uniformly along the cell membrane, whereas PI(3,4,5)P(3), the product of phosphatidylinositol 3-kinase (PI3K), accumulates locally at the leading edge. The key intermediate event that creates this strong PI(3,4,5)P(3) asymmetry remains unclear. Here, we show that Ras is rapidly and transientl...

متن کامل

Rac1 links leading edge and uropod events through Rho and myosin activation during chemotaxis.

Chemotactic responsiveness is crucial to neutrophil recruitment to sites of infection. During chemotaxis, highly divergent cytoskeletal programs are executed at the leading and trailing edge of motile neutrophils. The Rho family of small GTPases plays a critical role in cell migration, and recent work has focused on elucidating the specific roles played by Rac1, Rac2, Cdc42, and Rho during cell...

متن کامل

Asymmetric Localization of Calpain 2 during Neutrophil

Chemoattractants induce neutrophil polarization through localized polymerization of F-actin at the leading edge. The suppression of rear and lateral protrusions is required for efficient chemotaxis and involves the temporal and spatial segregation of signaling molecules. We have previously shown that the intracellular calcium-dependent protease calpain is required for cell migration and is invo...

متن کامل

Activation of Gαi3 triggers cell migration via regulation of GIV

During migration, cells must couple direction sensing to signal transduction and actin remodeling. We previously identified GIV/Girdin as a Galphai3 binding partner. We demonstrate that in mammalian cells Galphai3 controls the functions of GIV during cell migration. We find that Galphai3 preferentially localizes to the leading edge and that cells lacking Galphai3 fail to polarize or migrate. A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current opinion in genetics & development

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 2006